Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-De Ye, Hong-Ping Xiao,* Ya-Qian Cheng and Mao-Lin Hu

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
H-atom completeness 91\%
Disorder in solvent or counterion
R factor $=0.052$
$w R$ factor $=0.122$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Triaqua(dihydrogen 1,2,4,5-benzene-tetracarboxylato)(1,10-phenanthroline)cobalt(II) monohydrate

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the Co atom has an octahedral coordination geometry, involving three aqua O atoms, one carboxylate O atom and two N atoms from a 1,10-phenathroline (phen) molecule. $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving dihydrogen-1,2,4,5benzenetetracarboxylate $\left(\mathrm{H}_{2} \mathrm{TCB}\right)$ anions, aqua ligands and uncoordinated water molecules, along with $\pi-\pi$ interactions between the phen and aromatic rings of symmetry-related $\mathrm{H}_{2} \mathrm{TCB}$ anions, link the mononuclear units into a threedimensional network structure.

Comment

In recent years, the design and construction of metal-organic complexes have been studied extensively because of their structural diversity and promising applications as functional materials (Stein et al., 1993; Eddaoudi et al., 2001; Chen et al., 2003; Shi et al., 2003). High-dimensional network structures are often formed via hydrogen bonds and $\pi-\pi$ interactions (Shi et al., 2001; Boldog et al., 2002; Hu et al., 2003; Liu et al., 2003). The title compound, $\left[\mathrm{Co}(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{TCB}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (I) $\left(\mathrm{H}_{2} \mathrm{TCB}\right.$ is dihydrogen-1,2,4,5-benzenetetracarboxylate), represents a good example, comprising a three-dimensional network structure built from mononuclear units.

(I)

In (I), the $\mathrm{Co}^{\mathrm{II}}$ atom has a six-coordinate octahedral environment defined by one carboxylate O atom, three aqua O atoms and two N atoms from a phen molecule (Fig. 1). The two apical positions are occupied by atoms O11 and N1, the $\mathrm{O} 11-\mathrm{Co} 1-\mathrm{N} 1$ bond angle being $177.23(10)^{\circ}$. The basal square plane is formed by atoms $\mathrm{O} 1, \mathrm{O} 9, \mathrm{O} 10$ and N 2 , and the bond angles $\mathrm{O} 10-\mathrm{Co} 1-\mathrm{O} 1, \mathrm{O} 9-\mathrm{Co} 1-\mathrm{O} 1, \mathrm{O} 10-\mathrm{Co} 1-\mathrm{N} 2$ and $\mathrm{O} 9-\mathrm{Co} 1-\mathrm{N} 2$ lie in the range $89.03(10)-92.05(10)^{\circ}$. The Co-O distances range from 2.030 (3) to 2.106 (2) \AA, and the $\mathrm{Co}-\mathrm{N}$ distances are 2.113 (2) and 2.137 (3) Å.

The coordination mode and deprotonation of the carboxy groups in the $\mathrm{H}_{2} \mathrm{TCB}$ anion of (I) are significantly different from those in $\left[\mathrm{CuCl}(\text { phen })_{2}\right]_{2}\left(\mathrm{H}_{2} \mathrm{TCB}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Xiao et al., 2004), although they were obtained under the same reaction conditions. In $\left[\mathrm{CuCl}(\text { phen })_{2}\right]_{2}\left(\mathrm{H}_{2} \mathrm{TCB}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, two p-carboxy groups are deprotoned to form free anions, while in (I), two

Received 7 January 2004 Accepted 16 January 2004 Online 23 January 2004

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Only the major component (85%) of the disordered water molecule (atom O12) is shown.
m-carboxy groups are deprotoned; only one binds to the $\mathrm{Co}^{\mathrm{II}}$ ion in a monodendate manner and the other balances the charge.

In the $\mathrm{H}_{2} \mathrm{TCB}$ anion, the carboxy H atoms are involved in intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with adjacent carboxylate O atoms (Table 2). In the crystal structure, the water molecules form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with the carboxy and carboxylate O atoms as acceptors. Furthermore, weak $\pi-\pi$ interactions are observed between the benzene ring of the phen moiety and the aromatic ring of the $\mathrm{H}_{2} \mathrm{TCB}$ anion at $\left(x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}\right)$, the ring centroids being separated by 3.894 (2) A. These interactions link the mononulear units into a three-dimensional network structure (Fig. 2).

Experimental

A solution (10 ml) of dimethylformamide containing $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{mmol}, 0.12 \mathrm{~g})$ and $\mathrm{H}_{4} \mathrm{TCB}(0.5 \mathrm{mmol}, 0.13 \mathrm{~g})$ was added slowly to a solution (10 ml) of dimethylformamide containing 1,10 -phenanthroline ($0.5 \mathrm{mmol}, 0.10 \mathrm{~g}$). The reaction mixture was stirred for a few minutes and left to stand at room temperature for three weeks, affording red prism-shaped crystals.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=563.33$
Monoclinic, $P 2_{1} / n$
$a=7.0862(7) \AA$
$b=22.547(2) \AA$
$c=14.8041(14) \AA$
$\beta=97.875(2)^{\circ}$
$V=2343.0(4) \AA^{3}$
$Z=4$
Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000)
$T_{\text {min }}=0.680, T_{\text {max }}=0.801$
17167 measured reflections

$$
D_{x}=1.597 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 812 reflections
$\theta=2.4-23.0^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, red
$0.52 \times 0.39 \times 0.29 \mathrm{~mm}$

[^0]Figure 2

The three-dimensional network structure formed via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0466 P)^{2}\right.$
$w R\left(F^{2}\right)=0.122$
$S=1.17$
$\quad+2.4736 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
4259 reflections
$\Delta \rho_{\text {max }}=0.40 \mathrm{e} \AA^{-3}$
371 parameters
H atoms treated by a mixture of independent and constrained
$\Delta \rho_{\text {min }}=-0.29$ e $^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0032 (5) refinement

Table 1

Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

Co1-O10	$2.030(3)$	Co1-O11	$2.106(2)$
Co1-O9	$2.055(2)$	Co1-N2	$2.113(2)$
Co1-O1	$2.097(2)$	Co1-N1	$2.137(3)$
O10-Co1-O9	$176.95(11)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$171.09(9)$
O10-Co1-O1	$90.10(12)$	$\mathrm{O} 11-\mathrm{Co} 1-\mathrm{N} 2$	$99.94(10)$
O9-Co1-O1	$89.03(10)$	$\mathrm{O} 10-\mathrm{Co} 1-\mathrm{N} 1$	$94.01(13)$
O10-Co1-O11	$87.73(14)$	$\mathrm{O} 9-\mathrm{Co} 1-\mathrm{N} 1$	$88.96(10)$
O9-Co1-O11	$89.32(11)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$93.24(9)$
O1-Co1-O11	$88.91(9)$	$\mathrm{O} 11-\mathrm{Co} 1-\mathrm{N} 1$	$177.23(10)$
O10-Co1-N2	$89.26(12)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$77.94(9)$
O9-Co1-N2	$92.05(10)$		

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4$	0.82	1.60	2.410 (4)	171
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2$	0.82	1.57	2.386 (4)	177
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 4^{\text {i }}$	0.82 (2)	2.04 (2)	2.827 (3)	162 (3)
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.82 (2)	1.95 (2)	2.770 (3)	177 (3)
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 3^{\text {iii }}$	0.82 (3)	1.84 (3)	2.656 (4)	171 (3)
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.82 (3)	1.92 (3)	2.731 (4)	170 (4)
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{O} 12$	0.82 (2)	1.92 (3)	2.723 (4)	169 (4)
O11-H11B \cdots O2	0.82 (3)	2.00 (3)	2.731 (4)	147 (3)

H atoms of the coordinated water molecules were located in a difference map and were refined isotropically, with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$

metal-organic papers

distances restrained to 0.82 (1) and 1.32 (2) \AA, respectively. The remaining H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}(\mathrm{O})$. Water atom O 12 is disordered over two positions (O12 and O12'), with occupancies of 0.848 (7) and 0.152 (7), respectively. The H atoms attached to this disordered molecule were not located.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. 202137).

References

Boldog, I., Sieler, J., Chernega, A. N. \& Domasevitch, K. V. (2002). Inorg. Chim. Acta, 338, 69-77.
Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, W., Wang, J. Y., Chen, C., Yue, Q., Yuan, H. M., Chen, J. S. \& Wang, S. N. (2003). Inorg. Chem. 42, 944-946.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B. L., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
Hu, M.-L., Xiao, H.-P., Wang, S. \& Li, X.-H. (2003). Acta Cryst. C59, m454m455.
Liu, Y. H., Wu, H. C., Lin, H. M., Hou, W. H. \& Lu, K. I. (2003). Chem. Coттии. pp. 60-61.
Shi, Q., Cao, R., Sun, D. F., Hong, M. C. \& Liang, Y. C. (2001). Polyhedron, 20, 3287-3293.
Shi, Z., Li, G. H., Wang, L., Gao. L., Chen, X. B., Hua, J. \& Feng, S. H. (2003). Cryst. Growth Des. 4 25-27.
Stein, A., Keller, S. W. \& Mallouk, T. E. (1993). Science, 259, 1558-1664.
Xiao, H. P., Hu, M. L. \& Li, X. H. (2004). Acta Cryst. E60, m71-m72.

[^0]: 4259 independent reflections
 3955 reflections with $I>2 \sigma(I)$
 $R_{\text {int }}=0.024$
 $\theta_{\text {max }}=25.3^{\circ}$
 $h=-8 \rightarrow 8$
 $k=-27 \rightarrow 27$
 $l=-17 \rightarrow 17$

